Facilitating cross-language retrieval and machine translation by multilingual domain ontologies

Petr Knoth, Trevor Collins, Elsa Sklavounou, Zdenek Zdrahal
Knowledge Media Institute, The Open University, UK
Systran, France

22th May 2010
Outline

1. Aims and context
2. Method
3. Application in the domain of human genetics
4. Properties of the method and work in progress
5. Conclusions
Aims and context

Method

Application in the domain of human genetics

Properties of the method and work in progress

Conclusions
Multilingual access and retrieval of eLearning materials particularly important in domains that are quickly evolving:
Multilingual access and retrieval of eLearning materials particularly important in domains that are quickly evolving:

- Lecturers required to often change their materials (e.g. genetics, nanotechnology)
- Lecturers usually required to produce and deliver teaching materials in their language.
Multilingual access and retrieval of eLearning materials particularly important in domains that are quickly evolving:
- Lecturers required to often change their materials (e.g. genetics, nanotechnology)
- Lecturers usually required to produce and deliver teaching materials in their language.

Typical problems of students: How to find the interesting materials? How to use them?
Multilingual access and retrieval of eLearning materials particularly important in domains that are quickly evolving:
- Lecturers required to often change their materials (e.g. genetics, nanotechnology)
- Lecturers usually required to produce and deliver teaching materials in their language.

Typical problems of students: How to find the interesting materials? How to use them?

Objective

To show how can ontologies be used to improve the multilingual access to domain specific information.
Aims and context

Eurogene

- A 3-year eContentplus supported project (18 content providers, 3 technical partners).
Aims and context

Eurogene

- A 3-year eContentplus supported project (18 content providers, 3 technical partners).
- Architecture for accessing and sharing multilingual resources is one of the project subgoals (KMI & Systran).
 - *Cross-language information retrieval (CLIR)*
 - *Machine translation (MT).*
 - Both should be synchronized for terminology.
Outline

1. Aims and context
2. Method
3. Application in the domain of human genetics
4. Properties of the method and work in progress
5. Conclusions
Domain CLIR approaches

- **MT approach** - Query translated from the source language to the target language and submitted to the search system.

We are using approach 1(a) because:

- Multilingual ontologies are well-suited for domain CLIR.
- Multilingual ontologies can also be used to adapt MT to the target domain.
- Parallel corpora in specific domains often not initially available.
Domain CLIR approaches

- **MT approach** - Query translated from the source language to the target language and submitted to the search system.
 - (a) MT system used to translate the query to all languages of interest.

We are using approach 1(a) because:
- Multilingual ontologies are well-suited for domain CLIR.
- Multilingual ontologies can also be used to adapt MT to the target domain.
- Parallel corpora in specific domains often not initially available.
MT approach - Query translated from the source language to the target language and submitted to the search system.

(a) MT system used to translate the query to all languages of interest.
(b) A multilingual ontology used to map the submitted query to different languages.

We are using approach 1(a) because:

- Multilingual ontologies are well-suited for domain CLIR.
- Multilingual ontologies can also be used to adapt MT to the target domain.
- Parallel corpora in specific domains often not initially available.
Domain CLIR approaches

- **MT approach** - Query translated from the source language to the target language and submitted to the search system.
 (a) MT system used to translate the query to all languages of interest.
 (b) A multilingual ontology used to map the submitted query to different languages.

- **Statistical approach** - The system trained on a collection of texts (typically parallel). Query is then mapped to a language independent document vector using approaches, such as LSI (Dumais, 1997).

We are using approach (a) because:
- Multilingual ontologies are well-suited for domain CLIR.
- Multilingual ontologies can also be used to adapt MT to the target domain.
- Parallel corpora in specific domains often not initially available.
Domain CLIR approaches

- **MT approach** - Query translated from the source language to the target language and submitted to the search system.
 - (a) MT system used to translate the query to all languages of interest.
 - (b) A multilingual ontology used to map the submitted query to different languages.

- **Statistical approach** - The system trained on a collection of texts (typically parallel). Query is then mapped to a language independent document vector using approaches, such as LSI (Dumais, 1997).

We are using approach 1(a) because:

- Multilingual ontologies are well-suited for domain CLIR.
- Multilingual ontologies can also be used to adapt MT to the target domain.
- Parallel corpora in specific domains often not initially available.
Method has two phases:

- **Initialization phase**
 - Development of a seed monolingual ontology - reuse of an existing ontology or by using ontology learning methods (Cimiano and Völker, 2005, Sclano and Velardi 2007).
 - Extension of the ontology to multiple languages.
Method

Synergy of CLIR and MT

Method has two phases:

- **initialization** phase
 - Development of a *seed* monolingual ontology - reuse of an existing ontology or by using ontology learning methods (Cimiano and Völker, 2005, Sclano and Velardi 2007).
 - Extension of the ontology to multiple languages.

- **bootstrapping** phase
 - Adaption of the MT dictionaries (hybrid MT system required).
 - Adaption of the multilingual ontology.
Architecture

1. **Multilingual information retrieval**
 - Multilingual domain ontology
 - Indexes

2. **Translation rules**
 - Ontology updates

3. **Machine translation**
 - Rule base
 - Statistical training

4. **New document**
 - Translated documents
 - Corpora
A monolingual ontology is a 4-tuple $O = \langle C, T, E, f \rangle$:

- C is a set of concepts.
- T is a set of terms (representations of concepts).
- E is a set of oriented relations (is-a relations), such that $\langle C, E \rangle$ is a directed acyclic graph.
- $f : T \to C$ is a surjective function from terms to concepts.
A multilingual ontology is a 6-tuple $O' = \langle C, T, E, f, L, \text{lang} \rangle$

- A monolingual ontology $O = \langle C, T, E, f \rangle$
- L is the set of languages.
- $\text{lang} : T \rightarrow L$ is a mapping from terms to languages.
Multilingual ontology - example

- Lightweight ontology
- SKOS-like representation
The MT system is adapted to a specific domain:

- Using bilingual substitution rules of form: \(t_{L_1} \rightarrow t_{L_2} \) extracted from the multilingual ontology.

- Rules satisfy the condition \(f(t_{L_1}) = f(t_{L_2}) \), where \(t_{L_1} \in T_{L_1}, t_{L_2} \in T_{L_2} \) and \(T_{L_n} \) is defined as \(T_{L_n} = \{ t | \text{lang}(t) = L_n \} \).

- Flattening the ontological structure and deriving pairs for all supported combinations.
The MT system is adapted to a specific domain:

- Using bilingual substitution rules of form: $t_{L_1} \rightarrow t_{L_2}$ extracted from the multilingual ontology.
- Rules satisfy the condition $f(t_{L_1}) = f(t_{L_2})$, where $t_{L_1} \in T_{L_1}$, $t_{L_2} \in T_{L_2}$ and T_{L_n} is defined as $T_{L_n} = \{ t | \text{lang}(t) = L_n \}$.
- Flattening the ontological structure and deriving pairs for all supported combinations.

Example

linkage analysis$_{en} \rightarrow$ Kopplunganalyse$_{de}$

analyse de liasion$_{fr} \rightarrow$ Analisis de ligamiento$_{sp}$
Architecture

Multilingual information retrieval

- Multilingual domain ontology
- Indexes

Translation rules

- Ontology updates

Machine translation

- Rule base
- Statistical training

Transferred documents

- Corpora

New document

Corpora
Bootstrapping phase - Ontology refinement

- Content grows over time.
- New parallel texts can be automatically recognized (Resnik, 2003) and used by the machine translation system for training.
- If new pairs of text are discovered, statistical training is performed to improve the MT language model.
Bootstrapping phase - Ontology refinement

- Content grows over time.
- New parallel texts can be automatically recognized (Resnik, 2003) and used by the machine translation system for training.
- If new pairs of text are discovered, statistical training is performed to improve the MT language model.

The ontology is adapted by rules of form \((t_{L_1}, t_{L_2}, conf, lang_q)\) produced as an output of the statistical phase.

- \(conf\) is the confidence measure of translating term \(t_{L_1}\) to \(t_{L_2}\) estimated from text.
- \(lang_q : T \rightarrow L\) is a mapping from terms to languages.
Content grows over time.

New parallel texts can be automatically recognized (Resnik, 2003) and used by the machine translation system for training.

If new pairs of text are discovered, statistical training is performed to improve the MT language model.

The ontology is adapted by rules of form \((t_{L1}, t_{L2}, conf, lang_q)\) produced as an output of the statistical phase.

- \(conf\) is the confidence measure of translating term \(t_{L1}\) to \(t_{L2}\) estimated from text.
- \(lang_q : T \rightarrow L\) is a mapping from terms to languages.

Example

\[\langle \text{indirekte DNA-Analyse}_{de}, \text{linkage analyse}_{en}, 0.85 \rangle \]
Architecture

Multilingual information retrieval

Multilingual domain ontology

Indexes

Translation rules

Ontology updates

Machine translation

Rule base

Statistical training

Translated documents

Corpora

New document

Corpora

Method
Outline

1. Aims and context
2. Method
3. Application in the domain of human genetics
4. Properties of the method and work in progress
5. Conclusions
Ontologies used for:
- Annotation
- CLIR
- Query expansion
- Navigation across content in multiple languages (semantic similarity)
- MT

Eurogene portal

Statistics:
- About 20,000 files (papers, presentations, videos, images)
- About 15,000 ontological terms.
- Nine languages (English, French, Spanish, German, Greek, Italian, Dutch, Czech, Lithuanian).

http://eurogene.open.ac.uk/
Eurogene portal

- Ontologies used for:
 - Annotation
 - CLIR
 - Query expansion
 - Navigation across content in multiple languages (semantic similarity)
 - MT

- Statistics:
 - About 20,000 files (papers, presentations, videos, images)
 - About 15,000 ontological terms.
 - Nine languages (English, French, Spanish, German, Greek, Italian, Dutch, Czech, Lithuanian).

http://eurogene.open.ac.uk/
Outline

1. Aims and context
2. Method
3. Application in the domain of human genetics
4. Properties of the method and work in progress
5. Conclusions
Properties of the approach

- Performance of both CLIR and MT should never decrease as a result of any bootstrapping iteration.
- Two steps where an error may be introduced:
 - The update of the MT rule base.
 - The update of the multilingual ontology.
Properties of the method and work in progress

Properties of the approach

- Performance of both CLIR and MT should never decrease as a result of any bootstrapping iteration.
- Two steps where an error may be introduced:
 - The update of the MT rule base.
 - The update of the multilingual ontology.
- Evaluation - many components involved:
 - Coverage and specificity of the ontology.
 - Amount of domain corpora available.
 - Performance of the statistical training.
 - Validity of human judgements.
 - Other factors ...
Outline

1. Aims and context
2. Method
3. Application in the domain of human genetics
4. Properties of the method and work in progress
5. Conclusions
Multilingual ontologies suitable for domains with rich terminology.
Summary

- Multilingual ontologies suitable for domains with rich terminology.
- Can be used as a synchronization component for domain adaptation of CLIR and MT systems.
Multilingual ontologies suitable for domains with rich terminology.
Can be used as a synchronization component for domain adaption of CLIR and MT systems.
The solution is easily readable and adjustable by humans.
Summary

- Multilingual ontologies suitable for domains with rich terminology.
- Can be used as a synchronization component for domain adaption of CLIR and MT systems.
- The solution is easily readable and adjustable by humans.
- Publishing of multilingual ontologies on the Web in a standard format may allow an application to decide which domain ontology to use for query expansion and for adaption of the MT system based on the context of the query.
Thank you for attention!