Semantic and text-processing technologies for use within an integrated work-learn environment

LT4eL@ACL, Viktoria Pammer and Stefanie Lindstaedt

aposdle– New ways ...
... to work, learn and collaborate
Outline

- Introduction
- Knowledge Desktop
- APOSDLE
- Challenges for NLP and ST in e-Learning
- Conclusion
Introduction

- **Now:** Automated support for manual/repetitive work
- **Future:** Automated support for knowledge-intensive work
 - Work-integrated learning vs. separate times for working and learning
 - Work-integrated authoring vs. separate times for working and teaching/documenting
Knowledge Desktop

- Intelligent information delivery based on work (task and domain) context and competencies
- Using and extending organization-wide knowledge
 - No separate resources for working and learning
- Dynamic building of learning groups
- Knowledge Desktop shows relevant resources (documents, contacts etc.) when and how they are necessary
APOSdle

- Advanced Process-Oriented Self-Directed Learning Environment
 - www.aposdle.org

- APOSdle shall deliver...
 - available resources
 - resources automatically prepared for learning
 - contacts to experts and possibility for collaboration

- ... at the right time
APOSdle

- APOSdle knows about

Tasks - Users - Competencies - Knowledge (domain) - Resources
APOSDLE

- Semantic technologies in order to describe
 - users (competencies)
 - context (process and knowledge domain)
 - resources

- Text-based analysis (statistical text mining and content-based similarity detection)
 - for facilitation of models creation
 - for content-based classification of resources
 - for retrieval of resources
APOS DLE

Application of “Scruffy” Technologies

- Automatic discovery of user context based on user interactions
- Automatic inference of user competencies based on task executions
- Automatic extraction and mapping of semantic structures based on analysis of backend systems
- Automatic identification of similarities between resources based on text, multi-media data and semantic analysis
- Automatic maintenance of similarity measures and user profiles based on usage data and user feedback
Intermediate observations

- Models creation

- Evolution of knowledge / shift in domain

- Number of digital resources is surprisingly enough NOT huge within organisations!
Intermediate observations

- Models creation
- Evolution of knowledge / shift in domain
- Number of digital resources is surprisingly enough NOT huge within organisations!

- Ontology learning (NLP, ST)
- Ontology evolution (ST)
- For smaller numbers NLP wins over statistical methods
Challenges for NLP

- **Ontology learning**
 - Relevant term extraction, relationship extraction, extraction of additional knowledge (definitions, constraints etc.)
 - Quality must be relatively high in order to perform better than asking experts

- **Content analysis**
 - Understanding content of resources

- **Structure analysis**
 - Understanding structure of resources (chapter, introduction, ...)
 - Understanding type of resources (example, guideline, definition)

Multilinguality!
Challenges for ST

- **Models alignment**
 - Models of competencies, tasks, knowledge must be mapped
 - Goal is dynamic mapping!

- **Ontology evolution**
 - Models naturally evolve, domain of an organization may shift
 - Not trivial, especially w.r.t. existing mappings and annotations

- **Ontology views**
 - Not everyone may be allowed to see/use every part of every model
Conclusion

- Vision is a knowledge desktop
- APOSDLE approach
 - statistical/heuristic textmining
 - semantic technologies

Analysis of natural language is the next big issue that will decide on the quality of such a support system!

Advanced semantic technologies will provide technical background for realisation